
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 3. December 2018
Markus Püschel, David Steurer

Datenstrukturen & Algorithmen Bla� P13 HS 18

Please remember the rules of honest conduct:

• Programming exercises are to be solved alone

• Do not copy code from any source

• Do not show your code to others

You can submit your codes to the Judge until the exam. No bonus points are given for these exercises.
�estions concerning the assignment will be discussed as usual in the forum.

Exercise P13.1 Frequency Assignment.

�e city of Algo wants to auction the usage rights of its radio spectrum to m ≥ 1 telecommunication
companies, numbered from 1 tom. �e radio spectrum is divided into contiguous, non-overlapping, and
indivisible channels that are 10MHz wide. In particular, the j-th channel allows to use the frequencies
between j · 10 MHz and (j + 1) · 10MHz.

�e i-th telecommunication company will pay pi,j ≥ 0 Flops (the currency of the city of Algo) for the
right to use the j-th channel. Moreover, the i-th company will also pay an extra amount of hi,j ≥ 0
Flops for the right to use the contiguous 30 MHz-wide block starting at j · 10 MHz and ending at
(j +3) · 10MHz (i.e., the company will pay pi,j + pi,j+1 + pi,j+2 + hi,j if it is assigned the channels j,
j + 1, and j + 2).

�e assignable range of frequencies is between 10 MHz and (N + 1) · 10 MHz (i.e., there are exactly
N ∈ N+ channels, numbered from from 1 to N ), and each channel can be assigned to at most one
company (some channels may be le� unassigned). Moreover, as prescribed by the laws of Algo, no
single company can own a contiguous block of frequencies that is wider than 30 MHz.

You are given the numbers N , m, pi,j , and hi,j (∀i = 1, . . . ,m, ∀j = 1, . . . N ) and your task is to �nd
an assignment of the channels to the companies that abides the law and maximizes the amount of Flops
earned by the city.

Input �e input consists of a set of instances, or test-cases, of the previous problem. �e �rst line
of the input contains the number T of test-cases. �e �rst line of each test-case contains the integers
N andm. �e nextm pairs of two lines contain the values v and h for them companies. In particular,
the (2 · i)-th line of the test case contains the values vi,j ∀j = 1, . . . , N while the (2 · i + 1)-th line
contains the values hi,j ∀j = 1, . . . , N − 2.

Output �e output consists of T lines, each containing a single integer. �e i-th line is the answer
to the i-th test-case, i.e., it contains the maximum amount of Flops that can be earned by the city of
Algo.



Grading �is task awards 0 points. Your algorithm should require O(N ·m) time (with reasonable
hidden constants). Solutions with a time complexity of O(N ·m2) (and reasonable hidden constants)
will not pass all test cases. Submit your Main.java at https://judge.inf.ethz.ch/team/websubmit.
php?cid=25012&problem=AD8H13P1. �e enrollment password is “asymptotic”.

Example

10 MHz 100 MHz

Channels

2 8 1

5 2

2

0

1

6

3 3

4 2

8

4

0 7

6

8

1

1

3

4

8

0

2

5 4

126

6 7v1,j

h1,j

v2,j

h2,j

Company 1

Company 2

{
{

1 2 3 4 5 6 7 8 9

Figure 1: An instance with N = 9 and m = 2. An optimal assignment of channels to companies is
highlighted in red and blue. �is assignment collects 56 Flops from the companies.

Input (the �rst test-case corresponds to Figure 1):

2

9 2

2 8 1 2 1 3 2 6 7

5 2 0 8 8 5 4

1 3 3 4 6 1 8 6 12

6 4 2 0 7 4 0

8 1

3 2 3 6 8 4 1 6

9 1 1 5 3 4

Output:

56

35

Notes

For this exercise we provide an archive containing a program template available at https://www.
cadmo.ethz.ch/education/lectures/HS18/DA/uebungen/AD8H13P1.Frequency_Assignment.zip �e
archive also contains additional test cases (which di�er from the ones used for grading). Importing any
additional Java class isnot allowed (with the exception of the already imported ones java.io.{InputStream,
OutputStream} and java.util.Scanner class.

2

https://judge.inf.ethz.ch/team/websubmit.php?cid=25012&problem=AD8H13P1
https://judge.inf.ethz.ch/team/websubmit.php?cid=25012&problem=AD8H13P1
https://www.cadmo.ethz.ch/education/lectures/HS18/DA/uebungen/AD8H13P1.Frequency_Assignment.zip
https://www.cadmo.ethz.ch/education/lectures/HS18/DA/uebungen/AD8H13P1.Frequency_Assignment.zip


Exercise P13.2 Jungle.

Surrounded by dense jungle and wild ravines, you nervously look at your map. A storm is approaching and
you need to leave the area as soon as possible . . .

On your map, the jungle is divided into a square grid n×n. For each square with coordinates 0 ≤ i, j <
n, your map shows the time ti,j it takes you to move into this square from one of its neighbors. (For
simplicity, only entering the square costs time and the direction does not change that.) Your starting
square is identi�ed by having ti0,j0 = 0 and there is exactly one such square; the other squares satisfy
1 ≤ ti ≤ 10 000. �e size of the map is 1 ≤ n ≤ 500.

From any square you can move in four directions to an adjacent square. When you arrive at a square
adjacent to the edge of the map (at any of the four edges), you may immediately leave the jungle and
your journey ends. �e time that the entire journey takes is the sum of the required times of the squares
you visited.

Your task is to �nd the minimal time needed to leave the jungle from the starting square. �e number
of squares visited is irrelevant, just the time ma�ers. Note that there may be several fastest paths of
equal time but we care only about their time.

Example

Below are two examples of jungle maps with n = 8 and n = 12 and a shortest path in marked gray.
�e time needed to leave the �rst jungle is 10, and in the second case 236.

9 1 1 9 1 1 9 1
9 1 9 9 9 9 1 9
9 1 1 9 1 1 1 9
9 1 1 9 1 1 9 9
9 1 9 1 1 0 9 9
9 1 1 1 9 1 9 9
9 1 9 1 9 9 9 1
9 9 1 9 1 9 1 42

65 81 23 82 98 41 68 48 85 96 17 22
71 10 34 65 29 39 28 21 50 66 14 86
41 71 44 79 13 78 66 56 12 13 36 29
85 50 99 87 10 94 79 31 14 20 65 91
35 98 41 27 55 23 26 18 63 41 77 50
53 21 83 47 71 10 91 38 60 41 19 68
74 93 58 70 43 24 0 92 96 38 33 93
86 26 51 63 64 44 13 91 57 39 27 63
73 39 48 27 85 50 72 72 70 67 52 35
34 14 81 95 61 80 68 65 17 96 11 31
49 72 22 96 40 99 94 38 15 37 74 50
97 58 80 35 77 72 71 41 78 27 19 38

Input �e input consists of several cases. �e �rst line of the �le contains the number of cases to
follow.

Each case starts with n on a separate line. �e next n lines contain n numbers each. i-th line contains
the integers ti,j for j = 0, . . . , n− 1, separated by spaces.

Output For every test case, write the time required to leave the jungle on a separate line.

Example

Input (for the examples above)

2

8

9 1 1 9 1 1 9 1

9 1 9 9 9 9 1 9

3



9 1 1 9 1 1 1 9

9 1 1 9 1 1 9 9

9 1 9 1 1 0 9 9

9 1 1 1 9 1 9 9

9 1 9 1 9 9 9 1

9 9 1 9 1 9 1 42

12

65 81 23 82 98 41 68 48 85 96 17 22

71 10 34 65 29 39 28 21 50 66 14 86

41 71 44 79 13 78 66 56 12 13 36 29

85 50 99 87 10 94 79 31 14 20 65 91

35 98 41 27 55 23 26 18 63 41 77 50

53 21 83 47 71 10 91 38 60 41 19 68

74 93 58 70 43 24 0 92 96 38 33 93

86 26 51 63 64 44 13 91 57 39 27 63

73 39 48 27 85 50 72 72 70 67 52 35

34 14 81 95 61 80 68 65 17 96 11 31

49 72 22 96 40 99 94 38 15 37 74 50

97 58 80 35 77 72 71 41 78 27 19 38

Output

10

236

Grading �is task awards 0 points. �e program should run in time O(n2 log n) to pass all test
cases. If you want to use a heap, use java.util.TreeSet<> or java.util.PriorityQueue<>1 or
implement your own. Submit your Main.java at https://judge.inf.ethz.ch/team/websubmit.php?
cid=25012&problem=AD8H13P2, enroll password is “asymptotic”.

Notes

For this exercisewe provide an archive containing a program template available at https://www.cadmo.
ethz.ch/education/lectures/HS18/DA/uebungen/AD8H13P2.Jungle.zip�earchive also contains ad-
ditional test cases (which di�er from the ones used for grading). Importing any additional Java class is
not allowed (with the exception of the already imported ones java.io.{InputStream, OutputStream},
java.util.{TreeSet<>, PriorityQueue<>} and java.util.Scanner class.

1For these library structures, you will need to create a class for the heap elements and either make the class Comparable
or make a Comparator. Also note that PriorityQueue has slow removal of elements other than the queue head, and you
should not modify the order of the elements in the structures without removing and reinserting them. If unsure about the
programming or timing details, implement your own heap speci�c to your needs.

4

https://judge.inf.ethz.ch/team/websubmit.php?cid=25012&problem=AD8H13P2
https://judge.inf.ethz.ch/team/websubmit.php?cid=25012&problem=AD8H13P2
https://www.cadmo.ethz.ch/education/lectures/HS18/DA/uebungen/AD8H13P2.Jungle.zip
https://www.cadmo.ethz.ch/education/lectures/HS18/DA/uebungen/AD8H13P2.Jungle.zip


Exercise P13.3 Flea Market.

You have the bad habit of leaving items on the �oor of your basement, which is now completely full.
You decide to clean it up by selling some of the items in the �ea market of the city of Algo. �ere are
n items in your basement and the i-th item occupies a surface of si m2, weighs wi ≥ 1 Grahams (the
weight unit of the city of Algo), and can be sold for a price of pi Flops (the currency of the city of Algo).
You want to free an area of least S m2 from your basement but you can only carry at mostW Grahams
to the �ea market.

Your task is to design an algorithm that computes the maximum amount of Flops that you can earn
from the sale (subject to the above conditions).

Input �e input consists of a set of instances, or test-cases, of the previous problem. �e �rst line
of the input contains the number T of test-cases. �e �rst line of each test-case contains the three
positive integers n, S and W . �e next n lines each describe one item: the i-th line contains the three
integers si, wi and pi.

Output �e output consists of T lines, each containing a single integer. �e i-th line is the answer to
the i-th test-case, i.e., it contains the total value V of the items to sell at the �ea market. More precisely,
V = maxX∈I

∑
i∈X pi where I contains all the sets of items that have a total area of at least S and a

total weight of at mostW , i.e., I = {X ⊆ {1, . . . , n} :
∑

i∈X si ≥ S and
∑

i∈X wi ≤W}.

Grading �is task awards no bonus points. Your algorithm should requireO(n·S ·W ) time (with rea-
sonable hidden constants). Submit your Main.java at https://judge.inf.ethz.ch/team/websubmit.
php?cid=25012&problem=AD8H13P3. �e enrollment password is “asymptotic”.

Example

Input:

1

6 10 12

1 4 10

3 5 8

7 10 5

5 2 3

1 1 1

3 4 2

Output:

22

Notes For this exercise we provide an archive containing a program template available at https://
www.cadmo.ethz.ch/education/lectures/HS18/DA/uebungen/AD8H13P3.Flea_Market.zip�earchive
also contains additional test cases (which di�er from the ones used for grading). Importing any addi-
tional Java class isnot allowed (with the exception of the already imported ones java.io.{InputStream,
OutputStream} and java.util.Scanner class.

5

https://judge.inf.ethz.ch/team/websubmit.php?cid=25012&problem=AD8H13P3
https://judge.inf.ethz.ch/team/websubmit.php?cid=25012&problem=AD8H13P3
https://www.cadmo.ethz.ch/education/lectures/HS18/DA/uebungen/AD8H13P3.Flea_Market.zip
https://www.cadmo.ethz.ch/education/lectures/HS18/DA/uebungen/AD8H13P3.Flea_Market.zip


Exercise P13.4 Longest path in a directed acyclic graph.

Given a directed acyclic graph (also called a DAG), your task is to compute the longest directed path
in the graph. �e n vertices of the graph are numbers 0, 1, . . . , n − 1 and there are m directed edges
(also called arcs), each from vertex si to vertex ti for i = 1, . . . ,m. A directed path of length l is a
sequence of l distinct2 vertices p1, . . . , pl such that there is a directed edge from pi to pi+1 for every
i = 1, . . . , l− 1. �e graph being acyclic means that there is no directed cycle in the graph, or formally
there is no directed path from p1 to pl such that there is also an edge from pl to p1 (closing the directed
cycle).

For �nding the longest path in a graph, no e�cient algorithms are known that would work for every
graph3. But in the case of DAGs, simple and e�cient solutions exist and we suggest the following:

First, �nd a topological ordering on the vertices (an ordering v1, . . . , vn of the vertices such that edges
from vi only go to vj with j > i) as seen in the lecture. �en use a dynamic programming or a similar
approach on that ordering to �nd the longest directed path (we leave the details to you).

010

5

8

9

1

3

7

2

6
4

0105 89 1 372 64

Example Consider a graph with n = 11,m = 12 and the following edges (from-to): 7→3, 1→3, 7→1,
2→6, 5→9, 10→9, 10→0, 0→8, 9→8, 9→1, 8→4, 8→1. �e graph and one of its topological orderings
are drawn above. �e longest directed path has length 5 and there are 3 longest paths: 5-9-8-1-3, 10-9-
8-1-3 and 10-0-8-1-3 (there may be many more, and we only care about the length).

Input �e input consists of several cases. �e �rst line of the �le contains the number of cases to
follow.

Each case consists of two lines: �e �rst line contains the integers 1 ≤ n ≤ 10 000 and 0 ≤ m ≤ 10 000,
separated by a space. �e second line contains 2m integers s1, t1, s2, t2, . . . , sm, tm, the start and end
points of the directed edges, all si, ti ∈ {1, . . . ,m}, separated by spaces.

�e graphs contain no loops (e.g. edges from v to the same vertex v) or multiple parallel edges from u
to v. Also note that if there is an edge from u to v, there may be no edge from v to u, as that would
break acyclicity. �e input graph may or may not be connected, as you can see in an example below.
Also note that there may be undirected cycles (cycles when you ignore the direction of the edges), also
illustrated in the example. �e edges may be listed in any order.

Output For every test case, write the length of a longest directed path on a separate line.
2In directed acyclic graph, every directed path is a simple path, as repeating a vertex would imply a directed cycle.
3Look up “Hamiltonian path problem” and “NP-completeness” on Wikipedia if you want to know more.

6



Example

Input (for the example above and an empty graph)

2

11 12

7 3 1 3 7 1 2 6 5 9 10 9 10 0 0 8 9 8 9 1 8 4 8 1

5 0

Output

5

1

Grading �is task awards no bonus points. �e program should run in timeO(m+n). Submit your
Main.java at https://judge.inf.ethz.ch/team/websubmit.php?cid=25012&problem=AD8H13P4, en-
roll password is “asymptotic”.

Notes For this exercise we provide an archive containing a program template available at https:
//www.cadmo.ethz.ch/education/lectures/HS18/DA/uebungen/AD8H13P4.Longest_Path.zip. A�er
loading, the graph is represented in three ways for your use: A list of start- and end-vertices si and
ti for the m edges. For every vertex v a list of out-neighbors (vertices with direct edge from v). For
every vertex v a list of in-neighbors (vertices with a direct edge to v). Note that adjacency matrix is not
well-suited for this task.

�e archive also contains additional test cases (which di�er from the ones used for grading). Import-
ing any additional Java class is not allowed (with the exception of the already imported ones and
java.util.{Scanner, List, ListIterator, ArrayList}, as well as java.io.{InputStream,
OutputStream} class.

Extra If you can solve the problem above and �nd the length l of a longest path, how would you
count all the directed longest paths in time O(m+ n)? (You may assume the �nal number �ts into an
int.) �is is an extra question for no points, but see if you can solve it.

7

https://judge.inf.ethz.ch/team/websubmit.php?cid=25012&problem=AD8H13P4
https://www.cadmo.ethz.ch/education/lectures/HS18/DA/uebungen/AD8H13P4.Longest_Path.zip
https://www.cadmo.ethz.ch/education/lectures/HS18/DA/uebungen/AD8H13P4.Longest_Path.zip

